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Modeling steps: from emissions to impacts

Population, technology,
production, consumption

v

Emissions

v

Atmospheric concentrations

v

Radiative forcing and global
climate

v

Regional climate and
weather

v

Direct impacts (e.g. crops,
forests, ecosystems)

v

Socio-economic impaclts




» All of the steps are marked by uncertainty and some
degree of scientific disagreement.

— For a given emissions scenario, different climate models yield
different projections of temperature and precipitation.

— Given a projected change in climate variables, different models
use different damage/valuation functions and reach different
conclusions regarding the economic cost.

* In fact, the disagreement among damage and cost

functions is significantly larger than that among climate
change projections.

e This is so for two reasons.

— The climate modeling has been going on for longer and at a
higher level of activity than the damage and cost modeling, and
IS therefore in a more mature state.

— Damage estimation is inherently more complex: it involves a high
level of spatial disaggregation and a wide range of biological,
chemical, hydrological and physical phenomena, most of which
are not yet well modeled.



Two key challenges

* Finer spatial disaggregation
* Finer probabilistic detall

While economic valuation remains difficult, |
put those two items at the top of the list.



Importance of spatial resolution

* The curse of the average! Spatial
heterogeneity combined with a convex
damage function means that use of broad
spatial/temporal averages tends to
systematically understate damages.

« All impacts, and all adaptation are local!
For the purpose of understanding
adaptation, need to match boundaries of
jurisdictions involved.



Asymmetric Relation of Temperature and Crop
Yield Schlenker & Roberts (2006, 2008, 2009)

* Relationship is distinctly asymmetric, fairly flat at first
and then sharply declining beyond an upper threshold.

e Itis not symmetric as assumed by Mendelsohn,
Nordhaus & Shaw.
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Jurisdictional fragmentation

 Hundreds of water districts, each with its
own particular source of supply, water
rights, conveyance system, cost structure,
and allocation system. Many flood control

and levee districts.
e Land use planning similarly fragmented.

Each entity needs to be able to see itself In
the impact assessment.



Units of observation

 As much as possible, the unit of
observation for our economic impact and
adaptation analysis needs to be the

jurisdictional unit — e.qg., water district,
flood district, etc.



Distributional implications

* Climate change Is a massive machine for
the spatial re-distribution of income and
wealth.

 Distributional iIssues matter greatly in the
real world. The economic convention of
ignoring distribution and looking just at the
aggregate net impact is a grave mistake.

* This Is an additional reason for spatial
disaggregation




Bringing risk & risk aversion into the picture

From the physical, economic and behavioral
perspective, the most important component of
Impacts is associated with extreme events — the
crossing of thresholds.

In many cases these are not diversifiable risks.

Hence, there is likely to be some significant
degree of risk aversion associated with those
events.

This has not been factored into most existing
economic analyses. It need to be factored In
going forwards.
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Risk aversion

For a decision-maker who Is risk neutral,
outcomes can appropriately be framed in terms of
expected value.

For a d-m who Is risk averse, a negative risk
premium needs to be attached to the outcome,
reducing the expected value. The risk premium
Increases with (a) the magnitude of risk, as
measured by the variance, and (b) the degree of
risk aversion.

For a d-m who is risk loving, a positive risk
premium needs to be attached to the outcome,
Increasing the expected value.

| assume here that risk aversion Is what is called
for.
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e To account for risk aversion, need to:

— Measure the degree of risk aversion among
relevant decision makers

— Measure the degree of risk (variance of
outcomes).
 Where outcomes are multidimensional,
there are multivariate concepts of risk

aversion (though they raise some
technical complications).
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Downside risk

This is a modification of the conventional theory
of risk aversion.

It is based on the notion that there is some
asymmetry in risk attitudes towards outcomes.

Downside outcomes (defined relative to some
point) are weighed more heavily than upside
outcomes.

The concept was first applied in the financial
literature in the 1970s — going broke is viewed
differently than making a profit.

It is likely to apply to many physical outcomes of
climate change — e.g., asymmetry between
having too little water and having too much.
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Annual deliveries to Central Valley
agriculture, 2085

om— S acoline
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Net revenue from Central Valley agriculture,
2085
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Annual net revenue ($ million)

STANDARD
MINIMUM  MAXIMUM MEDIAN MEAN DEVIATION
BASELINE 107 562 456 415 113
GFDL A2 83 516 326 314 122
GFDL Bl 05 520 384 340 122
PCM A2 132 548 442 307 113
PCM BI1 114 543 464 413 109
LOSS COMPARED TO
BASELINE
GFDL A2 130 101
GFDL Bl 72 66
PCM A2 14 18
PCM Bl -8 2




The mean-risk model

(6) Maximize the mean and mumimize the risk.
One formulation represents this through a weighted objective function

(6a) Maxmmize u - AR_(x)

where g, 1s the mean of ). R, (x) 1s the downside nisk associated with f{*), and 2. > 01is a

weighting factor reflecting the relative preference for mean versus downside risk
avoidance.

Mean-risk models such as (6) and (6a) have been rationalized in terms of stochastic
dominance and expected utility maximuzation For ¢ = 2. Bawa (1978) related the mean-
target-semu-variance rule to third order stochastic dominance. He proved that one
distribution f{x) 1s preferred to another distribution g(x) for all von Neumann-
Morgenstern utility functions with positive first denivatives, negative second derivatives,
and positive third derivatives (1.e., decreasingly risk averse)—whuch 1s the condition for
third order stochastic domunance—if the mean of /{x) 1s at least as large as that of g(x)
and the target semi-variance at least as small. with strict inequality for some value of 7.
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Fishbum (1977) also identified the von-Neuman-Morgenstern utility function that 1s
congruent with the mean-c-order lower partial moment model. He showed that this utility
function takes the form

X forallx =T

(7 u(x) =
x—k(I-x) forallx=T

where £ 1s a positive scaling constant. Fishburn showed that « < 1 implies (downside) risk
seeking behavior, while a > 1 implies (downside) risk aversion: ¢ = 1 implies (downside)
risk neutrality. He showed how to calibrate « and & for a given value of 7. The parameter

« can be calibrated by having a decision maker choose between some particular gambles
and a sure thing. It can also be calibrated from observed data on choices between
gambles. Based on a review of some empirical evidence about the behavior of decision
makers in the face of risk, Fishburn suggested a value of « = 4; that value is used below.
The value of & can be determuned by observing that, with (7), one obtains

EFel= w(I)-u(T -1)

® w(T +1)-u(T)
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With Fishbum’s utility function (7). the formula for expected utility 1s
9 Eux)}=u -kR (x).
Given a probability distribution of outcomes, f-). and a utility function, the cerraingy

equivalent of f{*) 1s defined to be the quantity xp such that u(x,) = E{u(x)} . With (7),
assuming that xp = I, the certainty equivalent 1s given also by the right-hand side of (9):

(10) X, =M —-kR (x).

Thus, expected utility maximizing behavior in the face of risk calls for adjusting the
expected pavoff by a downside risk premuum, the second term on the right-hand side of
(10). Rusky ventures should be judged on the basis of thus downside-risk adjusted
expected payoff.

A possible alternative to (10) and (12) 1s a2 mean-risk criterion function of the form:

(13) X=pu, - RN, (x).

This 1s not rationalized by a specific utility function, but it could be used as a practical
criterion for evaluating risky prospects in the spirit of (6a). Thus criterion will be used
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Application of downside risk

We now apply the concept of downside risk aversion as reflected in the criterion (13) to
the impact of the climate change scenarios on both agricultural and urban water users.
Following the finding by Fishbum (1977), we seta = 4.

In the case of Central Valley agriculture, we define the outcome, x, to be the annual net
revenue from farming in the Valley, and we set T = 0; thus. downside risk refers to the

prospect of negative net revenue from farming in the Central Valley.
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Downside risk-adjusted impact

CENTRAL VALLEY AGRICULTURE
ANNUAL NET REVENUE 2085
($ million)

MEAN DOWNSIDE ADJUSTED

RISK FACTOR  VALUE
BASELINE $415 $132 $283
GFDL A2 $314 $178 $136
GFDL Bl $349 $163 $186
PCM A2 $397 $130 $267
PCM B1 $413 $126 $287

LOSS COMPARED TO BASELINE
GFDL A2 $101 $46 $147
GFDL Bl $66 $31 $97
PCM A2 $18 -$2 $16
PCM Bl $2 -$6 -$4




Implication

 For GFDL consideration of downside risk
Increases the estimate of loss by about

50%.

e For PCM, consideration of downside risk
reduces the estimate of loss.
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